电熔镁砂熔坨余热回收利用分析

谢 兴 王承阳

东北大学 工程热物理研究所 辽宁沈阳 110004

摘 要:通过不同工艺下熔坨余热加热矿石量的计算,分析了电熔镁砂熔坨余热回收利用的可行性,表明电熔 镁砂熔坨的余热有很大的回收利用价值。

关键词: 电熔镁砂; 熔坨; 余热; 回收利用

中图分类号: TK3_9 文献标识码: A DOI: 10. 3969/j. issn. 1001 - 1935. 2014. 03. 019

中国是世界上菱镁矿资源最为丰富的国家,总保 有储量约30亿t居世界首位。主要由菱镁矿生产的 电熔镁砂是重要的耐火原料,我国的电熔镁砂产量也 居世界首位。目前,我国对于电熔镁砂熔坨仍采用自 然冷却工艺,白白浪费了熔坨的大量余热。电熔镁砂 生产能耗很大,能耗成本占总成本的60%左右,在电 熔镁砂生产过程中有很大的节能空间^[1]。

为了充分利用电熔镁砂熔坨的余热,对电熔镁砂 熔坨余热回收利用的可行性进行了分析。

1 电熔镁砂熔坨余热潜能的分析计算

由于电熔镁砂熔坨的自然冷却过程持续大约一 周,采用强制取热的方式可缩短其冷却时间,强制取 热时间为24 h。

电熔镁砂熔坨直径为1300~1600 mm 高度为

文章编号:1001-1935(2014)03-0236-03

3 000 ~ 4 500 mm,体积约为 7 ~ 10 m³,圆柱体,属于 大型构件,本身为耐火材料,换热属于非稳态传导 方式。

为使余热取热符合 MgO 析晶的要求,采用分段 分时取热方法:将取热温度分为 2 000 ~ 1 280 ℃和 1 280 ~ 812 ℃两个阶段,并根据每个阶段熔坨的放热 具体情况采取相应的取热方法^[2]。

物体在向温度相对较低的环境放热时,其热量方 程的基本形式为:

$$Q = c \times V \times \rho \times \Delta t \quad , \tag{1}$$

式中: Q 为热量 kJ; c 为比热容 $kJ \cdot kg^{-1} \cdot K^{-1}; V$ 为体积 $m^3; \rho$ 为密度 $kg \cdot m^{-3}; \Delta t$ 为温度 C 。因此 两个电熔镁砂熔坨的总热量 $Q = 2 \times 1.343 \times 9.04 \times 3500 \times (2000 - 20) = 1.68 \times 10^8 kJ$ 。

电熔镁砂熔坨在高温、低温两个放热阶段的放热 情况见表1。

项目	高温阶段	低温阶段		
放热量/kJ	$Q = 2 \times 1.343 \times 9.04 \times 3500 \times (2000 - 1280) = 6.1 \times 10^{7}$	$Q = 2 \times 1.343 \times 9.04 \times 3500 \times (1280 - 812)$ = 3.9 × 10 ⁷		
平均放热速率 /(kJ • h ⁻¹)	$Q_{$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$Q_{$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$		
1 kg 矿石从常温预热到 400 ℃再到 700 ℃需要的热量/kJ	<i>Q</i> = 1.239 × 1 × (700 - 400) + 191(分解热) = 563	$Q = 1.239 \times 1 \times (400 - 20) = 471$		
系统热损失	$Q \times 30\%$	$Q \times 20\%$		
1 h 的放热量可加热矿石量/kg	$m = 2.5 \times 10^{6} \times (1 - 30\%) /563$ = 3 108	$m = 1.6 \times 10^{6} \times (1 - 20\%) /471$ = 2 717		

± 1	应达大方泊		
75 1	您吃什高温。	111711日四二15161	「ヒダド・リカリオンパーニュテー
15 1		\ .\./ <i>PT</i>	

由以上计算可见,电熔镁砂熔坨的余热巨大,余 热能量比加工矿石所需的热量大得多,具有直接利用 的价值。

谢兴:男,1989年生,硕士研究生。 E-mail:13998173701@126.com 指导老师:王承阳,男,1964年生,硕士 副教授。 E-mail:wangcy@smm.neu.edu.cn 收稿日期:2013-07-14

编辑:黄卫国

236 NAHUO CALLAO / 耐火材料 2014 / 3 http://www.nhcl.com.cn

2 电熔镁砂熔坨实际生产的取热计算

2.1 电熔镁砂熔坨的放热功率

初始温度均匀的长圆柱体在等温介质中冷却问 题的解为:

$$\theta = 2\theta_0 \sum_{m=1}^{\infty} \frac{Bi}{\left(\beta_m^2 + Bi^2\right) J_0(\beta_m)} J_0\left(\frac{\beta_m}{r_0}r\right) \exp\left(-\beta_m^2 \frac{a\tau}{r_0^2}\right) ,$$
(2)

式中: θ 为过余温度, K; Bi 为毕渥数; r 为半径, m; α 为热扩散率, m² · s⁻¹; τ 为时间, s; β_m 是特征方程 $\frac{J_0(\beta)}{J_1(\beta)} = \frac{\beta}{Bi}$ 的第 m 个正根; $J_n(z) = \sum_{k=1}^{\infty}$ $\frac{(-1)^k}{k!(n+k)!} (\frac{z}{2})^{n+2k}$, 为 n 阶第一类贝塞尔函数^[3]。

到 *r* 时刻为止,单位长度的圆柱体在冷却过程中 放出的热量为:

$$Q(\tau) =$$

$$2\pi\rho c\theta_0 \Big[1 - \sum_{m=1}^{\infty} \frac{4Bi^2}{\beta_m^2 (\beta_m^2 + Bi^2)} \exp\Big(-\beta_m^2 \frac{a\tau}{r_0^2}\Big) \Big] \quad (3)$$

根据实际测量,每个熔坨的散热表面积为24.63 m² 2 个熔坨为49.26 m²。取热风温度为800 ℃,预热 菱镁矿到700 ℃ 表面传热系数为60 W・m⁻²・℃⁻¹, 通过热电偶测量生产温度,计算不同表面温度的熔坨 的放热功率如表2所示。

衣 2 电烙铁砂烙比的放热切率					
t_w / °C	$\Delta t/^{\circ}C$	Q/kW			
2 500	1 800	5 320			
2 400	1 700	5 025			
2 300	1 600	4 729			
2 200	1 500	4 433			
2 100	1 400	4 138			
2 000	1 300	3 842			
1 900	1 200	3 547			
1 800	1 100	3 251			
1 700	1 000	2 956			
1 600	900	2 660			
1 500	800	2 364			
1 400	700	2 069			
1 300	600	1 773			
1 200	500	1 478			
1 100	400	1 182			
1 000	300	887			
900	200	591			
800	100	296			

2.2 电熔镁砂熔坨的降温时间

由电熔镁砂熔坨的毕渥数 $Bi = hR/\lambda = 5.074$ 及 r/R = 1.0 查诺模图得 $\theta_w/\theta_m = 0.22$ 对于过余温度 θ_m $= t_w - t_m = 1800$ ℃意味着 $\theta_w = 0.22\theta_m = 396$ ℃时,导 热才能进入正规状况阶段^[4-6]。对于电熔镁砂熔坨 不同半径处的传热状况如表 3 所示。

表 3	电熔镁砂熔坨不	同半径处的传热	状况表
r/m	r/R	θ_r / θ_m	θ_w / θ_r
0.05	0.06	0.98	0.22
0.10	0.13	0.97	0.23
0.15	0.19	0.96	0.23
0.20	0.25	0.94	0.24
0.25	0.31	0.91	0.24
0.30	0.38	0.88	0.25
0.35	0.44	0.82	0.27
0.40	0.50	0.76	0.29
0.45	0.56	0.70	0.31
0.50	0.63	0.63	0.35
0.55	0.69	0.56	0.39
0.60	0.75	0.50	0.44
0.65	0.81	0.45	0.49
0.70	0.88	0.37	0.59
0.75	0.94	0.29	0.76
0.80	1.00	0.22	1.00

2.3 非正规状况阶段电熔镁砂坨的壁温

当 $\theta_r = \theta_0$ 时,导热为非正规状况阶段。近似地, R 即为 r 则有 $q_m/q_0 = 1$ 。根据诺模图查得 θ_w/θ_m 及 表面无量纲过余温度公式 $\frac{\theta_w}{\theta_0} = \frac{t_w - t_w}{t_0 - t_w}$,并取计算的电 熔镁砂坨的壁温计算得到 θ_m/θ_0 计算得出的放热规 律表,如表4所示。

表4 电熔镁砂熔坨的放热规律表						
$\theta_{w A}$	$t_{w A}$ /°C	$t_{w,B}$ /°C	θ_w / θ_0	θ_m / θ_0	Bi	Bi ⁻¹
404	1 104	1 101	0.223	0.993	4.757	0.210
408	1 108	1 105	0.225	0.993	4.440	0.225
412	1 112	1 109	0.228	0.993	4.123	0.243
423	1 124	1 121	0.234	0.993	3.805	0.263
435	1 135	1 132	0.240	0.993	3.488	0.287
450	1 150	1 147	0.248	0.993	3.171	0.315
483	1 183	1 180	0.267	0.994	2.854	0.350
521	1 221	1 218	0.290	0.990	2.540	0.390
566	1 266	1 263	0.313	0.995	2.220	0.450
629	1 329	1 326	0.348	0.995	1.903	0.526
707	1 407	1 404	0.390	1.000	1.590	0.630
792	1 492	1 489	0.438	0.996	1.268	0.788
880	1 580	1 577	0.490	1.000	0.950	1.050
1 070	1 770	1 767	0.593	0.997	0.634	1.577
1 366	2 066	2 063	0.760	1.000	0.320	3.150
1 800	2 500	2 497	0.998	0.998	0	

2.4 熔坨加热的矿石量计算

2.4.1 高温取热阶段

高温传热阶段,取热风温度为800 °C,表面传热 系数为60 W・m⁻²・°C⁻¹。由Bi = 5.074及r/R = 1.0查得 θ_w/θ_m = 0.22。由 $Fo = \frac{a\tau}{R^2}$ = 0.4017查诺模 图得 θ_m/θ_0 = 0.32,于是,对于过余温度 $\theta_0 = t_0 - t_{\infty}$ = 1700 °C可求得 θ_m = 0.32 θ_0 = 544 °C,即: t_m = 1344 °C θ_w = 125.12 °C t_w = 925.12 °C。 高温期传热量为 Φ 则两个电熔镁砂熔坨平均每

http://www.nhcl.com.cn 2014/3 耐火材料/REFFACTORIES 237

小时的传热量 $2\Phi = 2 \times 590 \ 869.18 \ \text{kg} \cdot \text{h}^{-1} = 328.26$ kW。设循环系统内部进入电熔镁砂熔坨取热器时风 温为 500 ℃ 加热到 800 ℃ 则可加热热风量为 $m_{\text{air}} = \Phi/(h_{800} - h_{500}) = 2.917 \ \text{kg} \cdot \text{s}^{-1}$,标态时热风量为 $V_{\text{air}} = m_{\text{air}}\rho = 2.256 \ \text{m}^3 \cdot \text{s}^{-1} = 8121.10 \ \text{m}^3 \cdot \text{h}^{-1}$,实 际加热后热风量为 $V = V_{\text{air}} \frac{273.15 + 800}{273.15} = 31906.13 \ \text{m}^3 \cdot \text{h}^{-1}$ 。

假设矿石从 400 °C 被加热到 700 °C,同时有 30% 的碳酸镁分解吸热,则热平衡式为 $\Phi = m_{\overline{v}\overline{c}} [c_p (700 - 300) + Q_{\Im pr}]$,得 $m_{\overline{v}\overline{c}} = 1 208.8 \text{ kg} \cdot \text{h}^{-1}$ 。考虑 30% 的散热等损失,则 $m_{\overline{v}\overline{c}} = 1 208.8 \text{ kg} \cdot \text{h}^{-1} \times (1 - 30\%) = 846.16 \text{ kg} \cdot \text{h}^{-1}$ 。则 4 h(矿石被 800 °C 高温风加热到 700 °C 需大约 4 h) 可处理矿石量 4 h × 846.16 kg · h⁻¹ = 3 384.64 kg。

2.4.2 低温取热阶段

低温传热阶段 取热风温度为 450 °C ,表面传热系 数为 60 W・m⁻²・°C⁻¹。由于温度的改变,电熔镁砂 熔坨的导热系数重新取值为 6.7 W・m⁻¹・K⁻¹。计算 $Bi = 7.164 \ \text{D} r/R = 1.0$ 查诺模图得 $\theta_w/\theta_m = 0.165$ 。

取电熔镁砂熔坨的初始温度为 1 280 ℃,当电熔 镁砂熔坨的壁面温度达到 812 ℃时,

$$\frac{\theta_w}{\theta_0} = \frac{812 - 450}{1\ 280 - 450} = 0.436$$

于是有:

$$\frac{\theta_{\scriptscriptstyle m}}{\theta_{\scriptscriptstyle 0}} = \frac{\theta_{\scriptscriptstyle w}/\theta_{\scriptscriptstyle 0}}{\theta_{\scriptscriptstyle w}/\theta_{\scriptscriptstyle m}} = \frac{0.\,436}{0.\,165} = 2.\,64 > 1 \ ,$$

表明传热尚未进入正规状况阶段 儒另寻计算方法。

由 $\theta_w / \theta_m = 0.165$ 查诺模图得到导热进入正规阶 段对 应 壁 温 为 $\theta_w = 143.04 \ ^{\circ}$ 、即 $t_w = \theta_w + t_{\infty} = 593.04 \ ^{\circ}$ 时进入正规状况阶段。

由于电熔镁砂熔坨中心与壁温的初始温度不是 均匀的,所以进入正规状况阶段比较快,假定提前4h (偏少估计),计算 $Fo = \frac{a\tau}{R^2} = 0.3375$,于是根据诺模 图得到: $\theta_m = 0.35\theta_0 = 190.4$ °C,即 $t_m = 190.4 + 450 =$ 640.4 °C; $\theta_w = 0.165 \theta_m = 31.416$ °C ,即 $t_w = 31.416 + 450 = 481.42$ °C。

计算得出: $Q_0 = \rho c_p V(t_0 - t_\infty) = 36\ 095\ 919.41$ kJ Fo・ $Bi^2 = 17.32$,查得 $Q/Q_0 = 0.87$,所以 Q = 0.87 $Q_0 = 1\ 403\ 449.89$ kJ。

低温期传热量为 ϕ ,两个电熔镁砂熔坨平均每小时的传热量 $2\phi = 2 \times 261 \ 695.42 \ \text{kJ} \cdot \text{h}^{-1} = 145.4 \ \text{kW}$ 。设循环系统内部进入电熔镁砂熔坨取热器时风 温为 300 °C 加热到 450 °C 则可加热热风量为 $m_{\text{air}} = \phi/(h_{450} - h_{300}) = 0.911 \ \text{kg} \cdot \text{s}^{-1}$,标态时热风量为 $V_{\text{air}} = m_{\text{air}}/\rho = 0.705 \ \text{m}^3 \cdot \text{s}^{-1} = 7 \ 609.28 \ \text{m}^3 \cdot \text{h}^{-1}$,实际加热后热风量为 $V = V_{\text{air}} \frac{273.15 + 450}{273.15} = 20 \ 145.16 \ \text{m}^3 \cdot \text{h}^{-1}$ 。

矿石从 20 ℃ 被加热到 400 ℃,有热平衡式 $\Phi = m_{\overline{w}\overline{a}}c_p(400 - 20)$,则 $m_{\overline{w}\overline{a}} = 1$ 748 kg • h⁻¹。考虑 30% 的散热等损失,则 $m_{\overline{w}\overline{a}} = 1$ 748 kg • h⁻¹ × (1 - 0.3) = 1 223.6 kg • h⁻¹。4 h(矿石被 450 ℃热风加 热到 400 ℃需大约 4 h)可处理矿石量为 4 × 1 223.6 = 4 894.4 kg

3 结论

电熔镁砂熔坨余热量大 在保证耐火材料品质的 前提下,其余热有很大的回收利用价值。

参考文献

- [1] 栾禄毅 林阳 李玉娟.大型固体电熔镁余热潜能开发与生产利用[J].节能 2010(8):54-56.
- [2] 郭茂先. 工业电炉[M]. 北京: 冶金工业出版社 2007: 78-84.
- [3] 杨世銘 陶文铨. 传热学[M]. 4 版. 北京: 高等教育出版社 2006: 119-121.
- [4] 陆钟武. 火焰炉[M]. 沈阳: 东北大学出版社, 1994: 16-27.
- [5] 赵渭国 杜涛,王爱华.火焰炉设计[M].沈阳:东北大学出版社, 2005:44-52.
- [6] 奚士光,吴味隆,蒋君衍.锅炉及锅炉房设备[M].北京:中国建 设工程出版社 2006:15.